
Observation of a shape-dependent density maximum in random packings and glasses of

colloidal silica ellipsoids

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 376108

(http://iopscience.iop.org/0953-8984/19/37/376108)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 04:40

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/37
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 376108 (16pp) doi:10.1088/0953-8984/19/37/376108

Observation of a shape-dependent density maximum in
random packings and glasses of colloidal silica
ellipsoids

S Sacanna, L Rossi, A Wouterse and A P Philipse

Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University,
Padualaan 8, 3584 CH Utrecht, The Netherlands

E-mail: S.Sacanna@chem.uu.nl

Received 19 April 2007, in final form 18 July 2007
Published 8 August 2007
Online at stacks.iop.org/JPhysCM/19/376108

Abstract
We have measured the random packing density of monodisperse colloidal silica
ellipsoids with a well-defined shape, gradually deviating from a sphere shape up
to prolates with aspect ratios of about 5, to find for a colloidal system the first
experimental observation for the density maximum (at an aspect ratio near 1.6)
previously found only in computer simulations of granular packings. Confocal
microscopy of ellipsoid packings, prepared by rapidly quenching ellipsoid
fluids via ultra-centrifugation, demonstrates the absence of orientational order
and yields pair correlation functions very much like those for random sphere
packings. The density maximum, about 12% above the Bernal random sphere
packing density, also manifests itself as a maximum in the hydrodynamic
friction that resists the swelling osmotic pressure of the ellipsoid packings.
The existence of the density maximum is also predicted to strongly effect the
dynamics of colloidal non-sphere glasses: slightly perturbing the sphere shape
in a sphere glass will cause it to melt.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Bernal random sphere packing [3] is the classical model for amorphous matter and glasses
composed of spherical particles or colloids. Many colloids in nature and technology, however,
are non-spherical, and also in fundamental studies on model colloids, anisotropic particle
shapes are becoming more prominent [4–6]. Thus it is of interest to inquire whether disordered,
amorphous structures of non-spherical particles have a reference model, analogous to the
Bernal sphere packing. With respect to this analogy two important points may be noted.

First, it was realized some time ago [7] that the Bernal random sphere packing is not
unique: it is actually a member of a whole family of dense random packings with a density
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that appears to be determined only by the particle shape [7]. Members of that family include
spherocylinders [1], spheroids [2], cylinders with planar ends [8] and rigid fibers [7]; they all
randomly pack (in a computer [1, 2] or under gravity [7, 8]) to a density which is set by the
particle aspect ratio.

The second point in relation to spheres and non-spheres is that earlier work [7] showed
the apparent trend that non-spheres always randomly pack less densely than spheres. The
monotonic decrease in packing density with increasing aspect ratio could be explained by
the increase of the (orientationally averaged) excluded volume that progressively ‘dilutes’ a
random packing [7]. However, later it turned out that the Bernal packing does not represent a
density maximum but that this maximum actually occurs for nearly spherical particles: Bernal
packing represents a local minimum. This observation, initially found in computer simulations
on spherocylinders [1], was confirmed by Donev et al [2] for ellipsoids. The latter authors also
found in their simulations that the Bernal density is actually a singularity, with a steep density
increase upon any minor change in shape from a sphere to a prolate or oblate ellipsoid.

Pioneering experimental work on random packing of colloidal ellipsoids [9], nevertheless,
only showed a decrease of packing density with increasing aspect ratios. However, control
of particle shape was insufficient to draw quantitative conclusions about the relation between
ellipsoid shape and packing density and, moreover, at that time [9] no relevant computer
simulations were available for comparison with experimental data. The primary aim of this
work is therefore to investigate whether the intriguing density maximum for near-spheres in
simulations can indeed also be observed for random packings or glasses of real non-spherical
colloids. Essential for such an experimental study are well-defined colloidal spheroids with a
controllable shape, ideally varying from a thin prolate to a sphere. Recently we developed a
preparation procedure for monodisperse silica ellipsoids [10] that seemed to us suitable for this
investigation of colloidal near-sphere packings.

In section 2 we describe the preparation of the silica ellipsoids, comprising a multi-step
silica growth procedure to adjust the particle aspect ratio. Ellipsoid packings, obtained via
a rapid density quench in a centrifuge, were also investigated on a single-particle level by
confocal microscopy to check them for any positional or orientational order. Packing densities
and microstructures were also compared to computer simulations (section 2.5). In section 3
we not only discuss the experimental and simulated density versus aspect ratio curve itself, but
also the effect of this curve on the slow expansion rate of sediments against gravity. We end
with a conjecture on the possibly drastic effect of particle shape on the dynamics of colloidal
near-sphere glasses.

2. Materials and methods

2.1. Synthesis and controlled growth of ellipsoids

Starting from identical hematite seeds, silica ellipsoids with different aspect ratios (from 4.46 to
1.6) were obtained by a controlled seeded growth procedure which was repeated up to 20 times,
in each step following the method described in [10]. The only modifications to the original
procedure are a continuous feed of the reaction mixture with tetraethoxysilane (TEOS) using
a peristaltic pump instead of discrete additions, and the use of slightly higher concentration
of tetramethylammonium hydroxide (here 2 mM TMAH) for growing hollow ellipsoids [10].
These modifications ensure better particle size reproducibility and higher TEOS conversion.
For confocal laser microscopy (CLSM), specially designed particles were prepared as follows.
First, a 20 nm thick fluorescent silica shell was grown on the hematite seeds [10]. This
shell, containing chemically bounded fluorescein-isothiocyanate dyes (FITC, λem = 525 nm;
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λex = 495 nm), is needed to obtain a template of the hematite core which is subsequently
dissolved in concentrated HCl, yielding hollow ellipsoids with optimal optical properties for
confocal microscopy (no more light absorption from the cores). Next, the (fluorescent) silica
shell growth was continued until the particles were sufficiently large to be resolved by CLSM
(which requires a shell thickness of about 75 nm), and finally an additional 55 nm layer of
non-fluorescent silica was deposited on the particles. This core–shell morphology ensures that
when a close-packed sediment is imaged, the intensity profiles of the fluorescent cores are
always separated by a distance comparable to the resolution of the microscope along the xy
plane. Therefore, even if the particles are touching, their position can be determined (figures 4
and 10(B)).

2.2. Particle characterization

2.2.1. Electron microscopy. The size and polydispersity of the particles were determined by
transmission electron microscopy (TEM, Philips TECNAI-12). TEM pictures were analyzed
using image-analysis software [11], counting typically 200 particles per sample. A Philips
XL30 FEG scanning electron microscope was used to study the particle morphology and to
image the microstructures of the same sediments as used in the packing experiments. TEM
samples were prepared by dipping formfar-coated grids into dilute dispersions and allowing
the solvent to evaporate, whereas for SEM analysis dried sediments were glued on a sample
holder and coated with a 10 nm thick layer of platinum/palladium.

2.2.2. Electrophoresis. The zeta-potentials ζ were estimated from electrophoretic mobility
measurements (Coulter DELSA 440 SX) on diluted samples at a pH of 6, a temperature of
25 ◦C, and an ionic strength of 500 μM LiNO3 (Debye screening length κ−1

s = 7.5 nm).
Measurements were performed at constant electric field strength of 20 V/cm in both stationary
layers of a silver cell. The electrophoretic mobilities μe were converted to zeta potentials using
Smoluchowski’s equation [12]:

ζ = 3η0μe

2ε0ε f1(κa)
, (1)

where ε0 and ε are the vacuum permittivity and the dielectric constant (24.3 for ethanol)
respectively, η0 is the solvent viscosity (0.11 cp for ethanol), and the function f1(κa) is the
Henry correction factor, which for large experimental κa (κa > 20) can be approximated
by [12]

f1(κa) = 3

2
− 9

2κa
+ 75

2(κa)2
− 330

(κa)3
. (2)

2.2.3. Light scattering and contrast variation. Static light scattering (SLS) was performed at
25 ◦C using an automated set-up that scans the angle-dependent scattering intensity produced
by a dilute dust-free dispersion illuminated by light (λ = 546 nm) from a mercury lamp
(Oriel, model 66003). The solvents’ refractive indices were measured with a Carl Zeiss Jena
refractometer at 20 ◦C at a wavelength λ = 589 nm.

2.2.4. Mass densities. For each system the particle mass density ρp was determined by
measuring the dispersion density ρdisp as function of the particle concentration c:

∂ρdisp

∂c
=

(
1 − ρsolv

ρp

)
, (3)
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Figure 1. Initially stable dispersions of ellipsoidal particles (A) are rapidly quenched at 912 × g in
a table centrifuge to obtain random close packed sediments with volumes of typically 1 cm3 (B).

where c is in units of mass per volume (of the dispersion) and ρsolv = 0.789 53 ± 5 ×
10−5 g cm−3 is the mass density of ethanol determined, as the other densities, using an Anton-
Paar (DMA-5000) density meter thermostatted at T = 25.000 ◦C.

2.3. Measurement of sediment densities

Densely packed sediments of ellipsoidal particles were prepared by pouring about 3 ml of stable
dispersions with known weight concentration (typically 20 wt%) into optical cuvettes (Hellma,
types 110-OS and 110-QS with light paths of 2 or 10 mm) and centrifuging them at 912 × g
(Beckman Coulter Spinchron™ DLX) over at least 12 h. From the cuvette depth (optical path),
the volume of the sediments was accurately determined from highly magnified digital pictures
of the cuvette front side (figure 1) taken immediately after centrifugation with a Nikon Coolpix
5000 digital camera. To measure the sediment expansion as a function of time, samples were
stored on a heavy marble table in a thermostatted (20 ◦C) dark room.

2.4. Confocal microscopy

Close-packed sediments of fluorescent hollow ellipsoids for confocal microscopy studies were
prepared by first redispersing the particles in dimethyl sulfoxide (DMSO) (for an optimal
refractive index matching) and then quenching the dispersion at high centrifugal speed (912×g)
into home-made sample cells with volumes of typically 1 ml. The particles were imaged using
a Nikon TE 2000U inverted microscope equipped with a Nikon C1 confocal scanning head in
combination with an oil-immersion lens (100× CFI Plan Apochromat, NA 1.4, Nikon), and a
ArKr laser source (λem = 488 nm). Data analysis, such as radial distribution function g(r) or
nearest-neighbor angle distribution function, were performed on tracked particles coordinates
using image-analysis software similar to that described in [13, 14].

2.5. Simulations of ellipsoid packings

The spheroid packings were generated with the mechanical contraction method originally
developed for spherocylinders [1] and later extended to simulate random packings of various
other geometrical shapes [15]. Briefly the method works as follows. A gas of randomly
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oriented particles is prepared in a periodic box with volume V , which is decreased in each
iteration by a fixed value, and the positions of the particles are scaled so they remain inside the
box. At a certain number of iterations the particles start to overlap with each other. Whether
the spheroids are overlapping or not, and if so the amount of overlap, are checked using the
procedure described in [16]. Any overlap between particles is removed by translating and
rotating the particles using a fixed number of iterations. When it is no longer possible to remove
overlaps within a reasonable amount of computer time the previous configuration of particles
is accepted as the densest random packing. To find the optimal displacement an overlap
removal rate is calculated and this rate is maximized by using Lagrange multipliers as described
in [1, 15]. An inertia-like parameter ε is used to determine the ratio between translational and
rotational displacement. The algorithm generates reproducible packing densities, which for
spherocylinders are generally in good agreement with experimental values [1, 7].

The packing densities depend on the number of fixed iterations and ε. A higher number of
iterations results in a denser packing. However, the number of iterations necessary to increase
the density further increases exponentially until it is no longer computationally feasible to
continue. Also varying ε leads to slightly denser packings.

3. Results and discussion

3.1. Preparation

One of the challenging aspects of this study was the preparation of a colloidal model system of
non-spherical particles that would allow measuring their random packing densities as a function
of only their shape. Requirements for the particles are in the first place a comparable (and
low) polydispersity, a similar surface roughness, composition, charge, and mass density, to
minimize their effect on the packing densities and packing microstructure. Secondly, fairly
large amounts of the model colloids are needed to form macroscopic sediments (about 1 cm3

for each sample). To meet those requirements, we prepared all our colloidal systems starting
from identical seed dispersions of hematite spindles and subsequently slowly decreased the
particle aspect ratio by growing, layer-by-layer, silica shells in steps of approximately 10 nm
(see figure 2). The hematite cores were prepared following the procedure described in [17],
which we have scaled up to a 10 litre reaction batch to obtain a sufficient amount of spindles
(8.3 g of purified particles). As already shown in [10], a characteristic feature of silica growth
on ellipsoidal cores is that the decrease in aspect ratio rapidly flattens with increasing silica
shell thickness (figure 3), limiting the window of achievable particle aspect ratios. Figure 3
shows that, starting with hematite cores having an aspect ratio of 6.3, it is virtually impossible
to achieve an aspect ratio lower than about 1.5. In figure 2 the evolution of the particle aspect
ratio for some of the colloidal systems used in this study is illustrated by TEM images, whereas
particle sizes and polydispersities for all the seven systems used in this study are reported in
table 1.

As already mentioned in section 2.1, specially designed fluorescent hollow core–shell
ellipsoids (figure 4) were prepared for confocal microscopy. We improved the original
preparation method [10] by dissolving the hematite cores already in an early stage of the silica
shell growth (typically once a thickness of 20 nm is reached) to limit the damage caused by
HCl to the dye molecules and to achieve a higher fluorescence emission in the final sample.
Another useful improvement for growing hollow ellipsoids is to employ a higher concentration
of base (TMAH) to increase the TEOS conversion and reduce the number of steps needed to
grow large particles. However, this is only profitable when no bare hematite core are present
because of the strong tendency for ellipsoidal hematite particles (high Hamaker constant) to
form, at high pH, typical heart-shape doublets or larger aggregates [7].
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α= 1.63α= 2.16 α= 1

α= 2.94α= 4.83α= 6.30

Figure 2. Starting from monodisperse ellipsoidal hematite templates having an aspect ratio of
α = 6.30 (A), we gradually changed the particle shape by a sequence of in total 20 seeded silica
growth steps until α = 1.63 ((B)–(E)). Silica spheres (α = 1) were prepared by conventional Stöber
synthesis (F).

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

α 
(p

ar
tic

le
 a

sp
ec

t r
at

io
)

Δ  (shell thickness) [nm]

A

B

A    uniform silica coating

B    no growth at the tip

    experimental

Figure 3. Decrease in particle aspect ratio due to a step-by-step silica growth on hematite seeds.
The experimental results lie in between the two limiting cases [10] of an even silica deposition
on the particle surface (A) and the case of no silica deposition at the particle tips (B). Fitting the
data with a second-order exponential decay function (fitting line) we found a limiting aspect ratio
of 1.46.
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A B

Fluorescent core 
(FITC)

∼

Figure 4. (A) TEM image of fluorescent core–shell hollow silica ellipsoids for confocal microscopy.
The particles can be refractive index matched in DMSO due to the absence of the light-absorbing
hematite core. (B) The non-fluorescent silica shell of about 55 nm allows measuring the particles’
center positions even if they are touching (close-packed system).

Table 1. Properties of silica ellipsoids.

Particle
aspect ratio

Particle size a

(nm)
ρ b

(g cm−3) φRCP
c (1 − φ)3/φ2

Long axis Short axis

4.44 293 ± 38 66 ± 5 2.61 0.437 ± 0.002 0.934
3.68 298 ± 44 81± 6 2.34 0.451 ± 0.002 0.813
2.92 354 ± 35 121± 5 1.99 0.526 ± 0.004 0.385
2.16 400 ± 40 185± 6 1.98 0.585 ± 0.003 0.209
1.86 444 ± 42 239± 6 1.94 0.567 ± 0.001 0.252
1.63 532 ± 42 326 ± 8 1.85 0.607 ± 0.001 0.165
1 354 ± 28 — 2.08 0.540 ± 0.002 0.334

a TEM number-averaged size.
b Measured particle mass density.
c Raw experimental random close packing (RCP) volume fraction at 500 μM LiNO3.

3.2. Measurement of sediment densities

For charged colloids, the packing densities strongly depend on the thickness of the electric
double layer and therefore on the salt concentration in the sample. Extended double layers
(low ionic strength) reduce the effective particle aspect ratio and prevent a close packing due to
electrostatic repulsions. Hence, it is important to minimize those effects by using the highest
ionic strength (shortest Debye length κ−1) the system can tolerate before particle clustering
occurs. We have studied this salt effect by monitoring the change in packing densities as a
function of LiNO3 concentration for ellipsoids dispersed in absolute ethanol, and also assessed
how the added electrolyte affects the particle stability. For instance, ellipsoids with aspect
ratio α = 1.63 have a maximum in the packing density for 500 μM LiNO3 (at higher ionic
strength the particles aggregate and the sediment density decreases), whereas for spherical silica
particles this limit could be raised up to 10 mM. These ionic strengths correspond to a Debye
screening length κ−1

s of, respectively, 7.5 and 1.7 nm in the limit of low colloid concentration.

7



J. Phys.: Condens. Matter 19 (2007) 376108 S Sacanna et al

Figure 5. (A) Particle volume fractions φ versus aspect ratio α for randomly packed silica
ellipsoids at different concentration of LiNO3. (B) Reduced particle volume fractions φ/φ0 versus
α obtained from computer simulations (see [2] and [15]) compared with experimental results (φ0 is
the experimental random sphere packing fraction at 500 μM LiNO3).

α= 1.5 α= 3.5

α= 2.9α= 1.7

A

C

B

D

Figure 6. ((A), (B)) Computer-generated snapshot of mechanical contraction simulation of 800
spheroids with aspect ratio α = 3.5 and α = 1.5 compared with SEM pictures of real packings of
silica ellipsoids ((C), (D)).

However, for highly concentrated suspensions the contribution of the counter-ions produced
by the colloidal particles themselves (κ−1

c ) lowers even further the effective Debye length κ−1

which, assuming monovalent ions, can be estimated from [18] as:

κ2 = (κc)
2 + (κs)

2 = 4π LBn|Z eff| + 8π LB Navcs. (4)

Here, LB is the Bjerrum length, n is the colloid number density, Nav is Avogadro’s number, and
cs is the salt concentration in units of mol m−3. The effective colloid valency |Z eff| has been
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Figure 7. Expansion � of sediments in time (no salt added) due to the electrical double-layer
repulsion between the spheroids. For the marked aspect ratio effect, see the text.
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Figure 8. Guinier plots resulting from contrast variation measurements on diluted (1 wt%)
dispersions of hollow ellipsoids in various DMF/DMSO mixtures (λ0 = 546.1 nm, T = 21.5 ◦C).
Each curve is labeled by the mixture refractive index. (A) and (B) are pictures of particle sediments
in (respectively) ethanol and DMSO.

calculated from the zeta potential (ζ = −6.45 mV) via the Gouy–Chapman model [19]:

σe = 1

e

√
8ε0εcs RT sinh

(
e�

2kBT

)
. (5)

Using ζ as the surface potential � , we found a particle surface charge density σe of 1.65×10−3

elementary charges per nm2 (this is about 24 nm between two charges), and a |Z eff| of about
800. For packed ellipsoids in the absence of salt, this implies an electrical double layer
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Figure 9. Extrapolation of
√

I (k)/ns to I (k) → 0 for particles in DMSO/DMF for three
different k-vectors as indicated in the legend. The extrapolated lines cross the x-axis at the match
point n0, which is almost independent of scattering angle, as expected for optically homogeneous
particles [20].

thickness of about 46 nm, which accounts for the lower packing densities found for the samples
in absolute ethanol with no salt added (figure 5). At 500 μM LiNO3, κ in equation (4) is almost
entirely dominated by κs, and the Debye screening length reduces to 7.4 nm.

The influence of the centrifugal force and centrifugation time on the packing densities
and its reproducibility were also studied. However, above 1800 rpm (820 × g) we found
no significant differences, and reproducible densities were obtained independently from the
centrifugation time (8 or 12 h). After centrifugation all samples (with [LiNO3] � 500 μM)
could be redispersed to stable dispersions via prolonged immersion in a ultrasonic bath.

When particle sediments, packed in absence of added salt, are left undisturbed, the double-
layer repulsions between charged particles cause a noticeable expansion of the sediments in
time (see figure 7). The rate and extent of such expansion, which is largely reduced when
LiNO3 is present, varies with the particle shape, and it is maximal for the sample with the
highest aspect ratio (figures 1 and 7), as further discussed in section 3.7.

3.3. Contrast variation

For an accurate particle tracking of the ellipsoids by confocal microscopy (see section 3.4) it is
crucial to have a good matching between the refractive index of the particles (np) and that of the
solvent (ns) to reduce the scattering of light and therefore the blurring of the confocal image.
Contrast variation measurements (figure 8) were performed by changing the optical contrast
(np − ns) of dispersions containing identical particle concentration, and recording the SLS
intensity I at different wavevectors K . The contrast was varied by changing the composition
of a DMSO/dimethyl formamide (DMF) mixture. Figure 8 shows that the scattering intensity
in such mixtures is minimal for pure DMSO (ns = 1.4778), whereas the effective particle
refractive index np can be estimated by plotting the square root of the intensity I (k) versus

10
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Figure 10. Optically matched packings of fluorescent core–shell ellipsoids in DMSO (A) are
imaged in 2D ‘slices’ of 21 × 21 μm2 by confocal microscopy (B). The corresponding 2D radial
distribution function g(r) (D) and the nearest-neighbor angle distribution function (C) (calculated
by analyzing the center coordinates of about 20 000 particles) tell us that there is no order in the
samples, confirming that the sediments in this study are indeed random packings.

ns and extrapolating it to zero (I (k) → 0) [20]. The resulting average particle refractive
index (np = 1.4799) is fairly high if compared to Stöber silica (typically n ∼ 1.45–1.46),
which could be due to the adsorbed polyvinyl pyrrolidone (PVP) which was used between each
growing step during the particle synthesis [10]. Moreover, the measured particle refractive
index np is, in good approximation, independent of the scattering angle (see figure 9), which
only occurs when the particles are optically homogeneous. Since we have hollow ellipsoids,
this means that the solvent permeates the particles rapidly on the timescale for SLS sample
preparation and measurements, and that cores always contain the same solvent composition as
outside the ellipsoids.

3.4. Confocal microscopy

The effective randomness of our particle packings (i.e. absence of nematic or higher ordered
phases) is confirmed by inspecting SEM images taken on dried sediments, showing no sign
of a preferential orientational order (see figures 6(C) and (D)). A more quantitative study on
the packing microstructure can be done by pinpointing the particle center positions in a series
of two-dimensional (2D) confocal snapshots [13] taken on packings of fluorescently labeled
core–shell ellipsoids. Figure 10(B) shows a representative confocal micrograph for ellipsoids
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with aspect ratio 1.65 dispersed in DMSO (no salt added) and the corresponding 2D radial
distribution function g(r) (figure 10(D)). As expected for a random packing, we observe a
short translational correlation length compared to particle size (ξT = 374 nm: envelope of
g(r) ∝ exp[−r

ξT
]), and the first peak of g(r) (489 nm) being in between the long and the short

particle axis dimensions (respectively l = 502 nm and w = 304 nm). When the sediments are
allowed to relax in time or when the ellipsoids are settled by gravity instead of being rapidly
quenched at 912×g, this first peak broadens considerably and shifts to about 620 nm, indicating
that the particles are still slightly repulsive despite the presence of salt. However, for our
systems this relaxation time is of the order of 24 h, whereas the measurements are performed
within few minutes from centrifugation. Figure 10(C) shows a nearly flat nearest-neighbor
angle distribution function, which further demonstrates the absence of order in our packings.

3.5. Packing densities

Measuring absolute values of particle volume fractions φ is not a trivial problem since
it requires knowing the correct mass densities ρp of the particles. Despite the fact that
colloidal dispersion densities ρd can in principle be accurately measured (within an accuracy
of 5 × 10−5 g cm−3), their weight fractions are always slightly underestimated because they
rely on measuring the weight fraction of dry particles (i.e. without the hydrating solvent). In
figure 5(A) we have compensated for this effect by scaling the experimental packing fractions
(see table 1) on the random sphere packing density of φRCP = 0.64 for spherical particles
packed at the highest salt concentration (Debye length κ−1

s = 1.7 nm). This also facilitates
the comparison with computer simulation results but, it should be noted, does not change the
trend in the plot of figure 5(A), which clearly shows a maximum in the packing density for an
aspect ratio around 1.6. The influence of LiNO3 on the packing densities is manifest in figure 5
with a lower packing density for samples prepared in absolute ethanol with no added salt. As
anticipated in section 3.2, this is the result of extensive electric double layers which prevent the
particles from close packing and which tend to level off the maximum in figure 5.

3.6. Comparison to simulations

The experimental scaled volume fractions in figure 5(B) match the simulations quite well,
especially near the volume fraction maximum. The volume fractions found from simulations
are slightly higher, which could be due to details of the experimental packing procedure.
For spheres, granular packings need to be tapped or vibrated to reach a volume fraction of
0.64 [21, 22], and it might be the case that sedimenting under high g-force is not enough to
reach the densest packing in spheroids but that here also some tapping would be required to
further compact the packing. A comparison of computer-generated snapshots of the simulation
with SEM (figure 6) and confocal (figure 11) pictures of experimental particle packings shows
in any case that the structure is very similar in both local and global structure of the packing.

A characteristic feature of simulated packings, on the other hand, that is difficult to
reproduce is the steep increase in packing density very close to the sphere shape at α = 1
(figure 5). It has been pointed out [2] that, in fact, the sphere random packing density represents
a singularity. This becomes clear when both prolate (figure 5) and oblate deviation from the
sphere shape are considered, showing that spheres are located at a local minimum in the form
of a non-differentiable cusp [2]. There are at least two reasons why such singular behavior
is difficult to observe for our colloidal spheroids. First, particles with aspect ratios in the
range 1 < α � 1.5 (figure 5) need to be prepared, which is practically impossible via our
silica growth procedure as explained in the discussion of figure 3. Second, even a very small

12



J. Phys.: Condens. Matter 19 (2007) 376108 S Sacanna et al

A B C

Figure 11. A 2D cross section (B) resulting from a ‘virtual’ cut through a simulated packing of
ellipsoids (A), and a real 2D confocal image of core–shell ellipsoids (C) resemble each other closely.

polydispersity in particle size and shape (unavoidable, whatever colloid synthesis route one
employs) will blur the steep gradient in packing density on approach of the sphere shape.

3.7. Sediment expansion

The rapidly quenched ellipsoid sediments (figure 1) are actually non-equilibrium systems: they
slowly swell in time, as shown in figure 7. This expansion, driven by inter-ellipsoid double-
layer repulsions, will continue until a sedimentation–diffusion equilibrium is reached in which
the swelling osmotic pressure is balanced by gravity. Figure 7 shows that the expansion
rate of the sediments strongly depends on the particle aspect ratio. This dependence can be
qualitatively understood from the fact that the expansion is resisted by liquid flow along the
ellipsoids and that the flow velocity will be given by Darcy’s law [23] as

�u = − k

η
�∇ p. (6)

Here �u is the average flow velocity of an incompressible liquid with viscosity η through a
porous medium (here a random particle packing), driven by an average hydrostatic pressure
�∇ p. The Kozeny–Carman (KC) relation for the liquid permeability is

k = 1

C

(1 − φ)3

φ2
A−2

g (7)

in which Ag is the specific surface area of the solid phase composing the porous medium with
a solid volume fraction φ, and C is the so-called Kozeny constant [24]. The KC relation is
known to be quite accurate for dense random packings, for spheres [25] as well as non-spherical
particles, with a typical value of C = 5 ± 1 for the Kozeny constant, irrespective of particle
shape [23].

Taking in figure 7 the expansion of the random sphere packing (α = 1) as reference, it is
seen that the expansion rate becomes minimal for a particle shape (α = 1.6) near the density
maximum. This must be primarily due to the volume fraction term in the liquid permeability of
equation (7) which is minimal at the density maximum: for the α = 1.6 spheroids (φ = 0.607)
we find (1−φ)3/φ2 ≈ 0.165, whereas for spheres (φ = 0.54) the value is 0.334, corresponding
to a liquid permeability which is twice as large. Beyond the maximum at α = 2.9 the sediment
volume fraction is comparable to the random sphere packing (figure 5). Nevertheless, the
expansion rate for α = 2.9 in figure 7 is still below the sphere value, presumably because the
specific surface area Ag in equation (7) is higher for the α = 2.9 spheroids which increases the
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Figure 12. Conversion of maximum packing densities from figure 5 to relative viscosities as
a function of aspect ratio using equation (8) for various particle volume fractions. The density
maximum corresponds to a pronounced viscosity minimum. In the plot the symbols are obtained
from experimental densities (figure 5) and the curves are derived, again using equation (8), from
random packing densities from computer simulations.

hydrodynamic friction. For even higher aspect ratios Ag increases further, but now the packing
density is dropping significantly such that the net effect for aspect ratio α = 4.4 in figure 7 is a
faster expansion than for spheres.

3.8. Effects on dynamics

The shape-dependent density maximum (figure 5) in the random packing of nearly spherical
colloidal ellipsoids must also have a significant effect on the viscosity of such colloids. If
colloids are arrested in a highly viscous, glassy phase because of geometrical constraints,
it is very likely that a small change in colloid shape (at constant colloid concentration) will
lower the viscosity substantially such that the glass ‘melts’ to a fluid in which the particles can
escape from their arresting cages. This melting would be a consequence of the concentration
dependence of the relative viscosity ηr which for high concentrations of randomly oriented
particles follows the scaling [26]

ηr =
(

1 − φ

φmax

)−2

, (8)

where φmax is the colloid volume fraction at which the viscosity diverges. The precise form of
the concentration dependence in equation (8) is not relevant; the argument here only requires
a very steep viscosity increase on approach of φmax which is approximately (presumably
somewhat below) the random packing density. The prediction from equation (8) is that the
viscosity of a sphere fluid will decrease when the spheres are deformed at constant colloid
density until the aspect ratio is reached which has the maximum packing density (figure 12).
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The viscosity will rise upon further elongating the colloids, and will continue to do so in the
limit of thin rods where the random packing density follows the asymptotic result [7, 1]:

φmaxα ∼ c

2
; α 
 1, (9)

where c ≈ 10 is the average contact number per rod [7, 8]. The viscosity change for aspect
ratios near the packing density maximum will be modest for colloid volume fractions below
about φ ≈ 0.4, but quite significant for dense fluids (figure 12). The effect of aspect ratio on
viscosity has been verified experimentally for thin fibers (see the review in [7]). However, we
have not been able to verify yet the viscosity change for dense fluids of our silica ellipsoids; it
is difficult to measure high viscosities for such small samples (figure 1) and, moreover, it is not
trivial to prepare samples with constant volume fraction.

4. Conclusions and outlook

In conclusion, we have quantitatively analyzed the random packing densities of ellipsoidal
silica colloids as a function of their aspect ratio, and compared them with recent computer
simulations. Our findings show that prolate colloids randomly pack more densely than spheres
when their aspect ratio is lower than about 2.5. Confocal microscopy on a typical packing of
(optically matched) ellipsoids, prepared by rapid sedimentation, shows that there is no long-
range positional and orientational order: the silica ellipsoids very much randomly pack as in
the computer simulations of the packing process. The colloidal stability of the ellipsoids is
not only demonstrated by the reproducibility of the packing experiments but also by the slow
expansion of the sediments against gravity. The trend in the expansion rate as a function of
particle aspect ratio manifests the random packing density maximum and the density decrease
at higher aspect ratios. The existence of the density maximum also suggests a drastic viscosity
change (melting of glass) which can occur by slightly deforming the spherical shape in a sphere
glass.
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